Detection and Quantification of the Emission of Formic acid and Acetic acid under in-situ Storage and Display Environmental Conditions in Museum

Introduction

- Pungent smell discovered from the region with newly built wooden showcases
- Preliminary analysis of different gaseous pollutants in collection stores
- Various direct-read instrument available for different gaseous pollutants, but not for organic acids
- Pilot project to develop a suitable method to quantify amount of formic acid and acetic acid under in-situ conditions in museum
- Sampling with sorbents, followed by instrumental analysis with lon

The Concerns

Demanding Detection Limit Required

				-			
		Suggested Po	llutant Limits	Action Limits			
Major Indoor- Generated Pollutants in Museums		Sensitive Materials	General Collections	High	Extremely High		
Hydrogen sulfide, H_2S		< 0.010	< 0.100	0.4 to 1.4	2.0 to 20		
acids	Acetic acid, ^j CH ₃ COOH	<5	224 40 to 280	200 to 480	600 to 1000		
Organic	Formic acid, ^k HCOOH	<5	42 to 78	104 to 260	260 to 780		

Vulnerable to Analytical Column Cloggage

- Incomplete filtration due to product defect
- Introduction of insoluble particles due to human error
- Precipitation of impurities inside column

Retention Time Required

- Acetate: 3.6 8.8 minutes
- Formate: 4.3 9.4 minutes

Our Method

Passive Sampler

Radiello[®](Triethylamine)

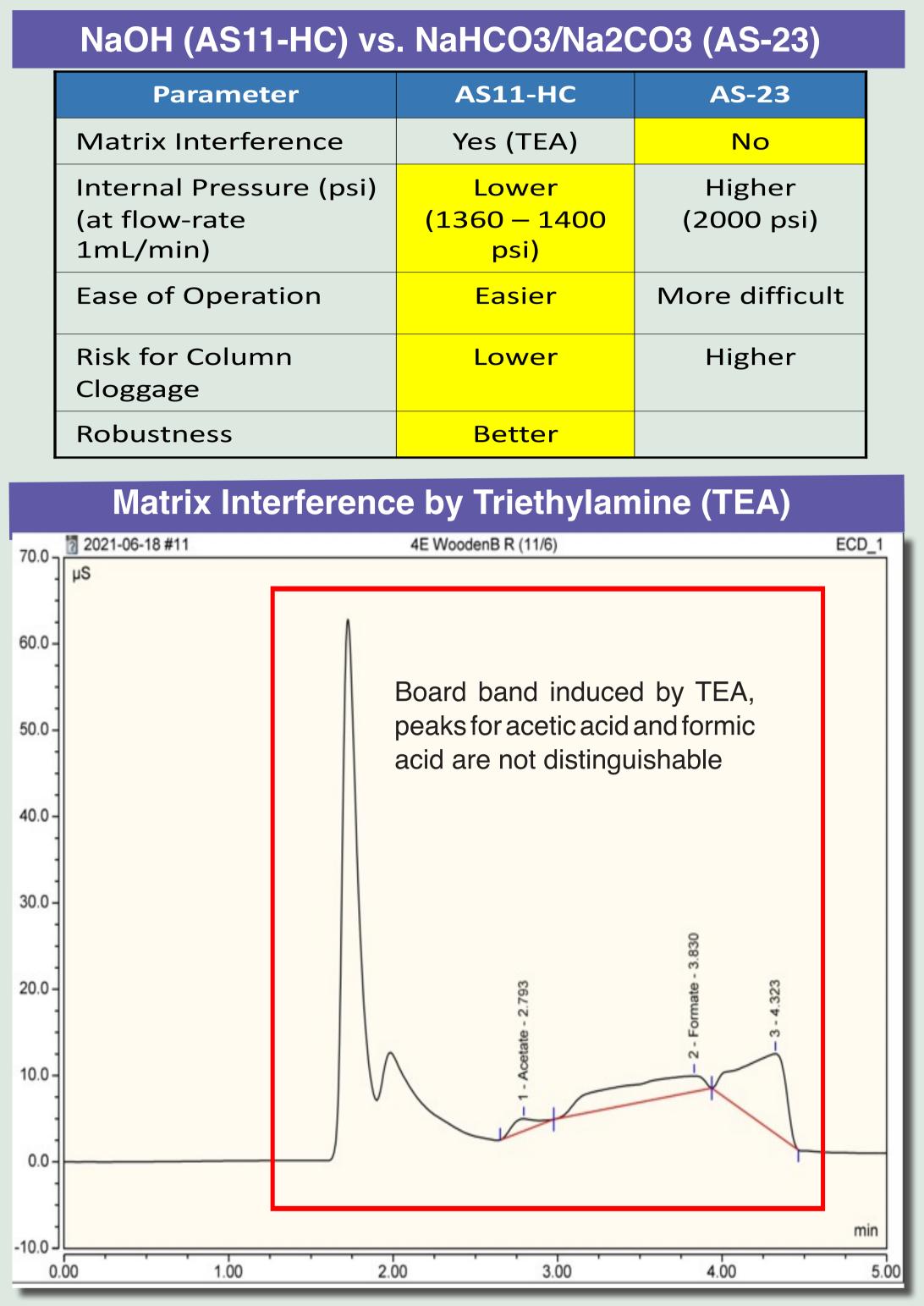
Ion Chromatograpy-Conductivity Detector

- IC-CD Model: Dionex ICS-1100
- Mobile phase: 0.4mM NaOH
- Column: DionexTM IonPacTM AS11-HC
- Mode: Isocratic
- Flow rate: 1.0 mL/min
- Injection Volume: 25 μL

1 Preventive Conservator, Conservation Office, Leisure and Cultural Services Department, Hong Kong Special Administrative Region (HKSAR), China (E-mail: mskcheung@lcsd.gov.hk) 2 Conservation Project Intern and Undergraduate Student in Chemistry Department, Hong Kong Baptist University HKSAR, China

3 Paper Conservator, Conservation Office, Leisure and Cultural Services Department, HKSAR, China

Mark Sai-kit CHEUNG1, Penny Pui-lam TAM2, Wai-shan TSUI 3



<u>Method Development / Modification</u>

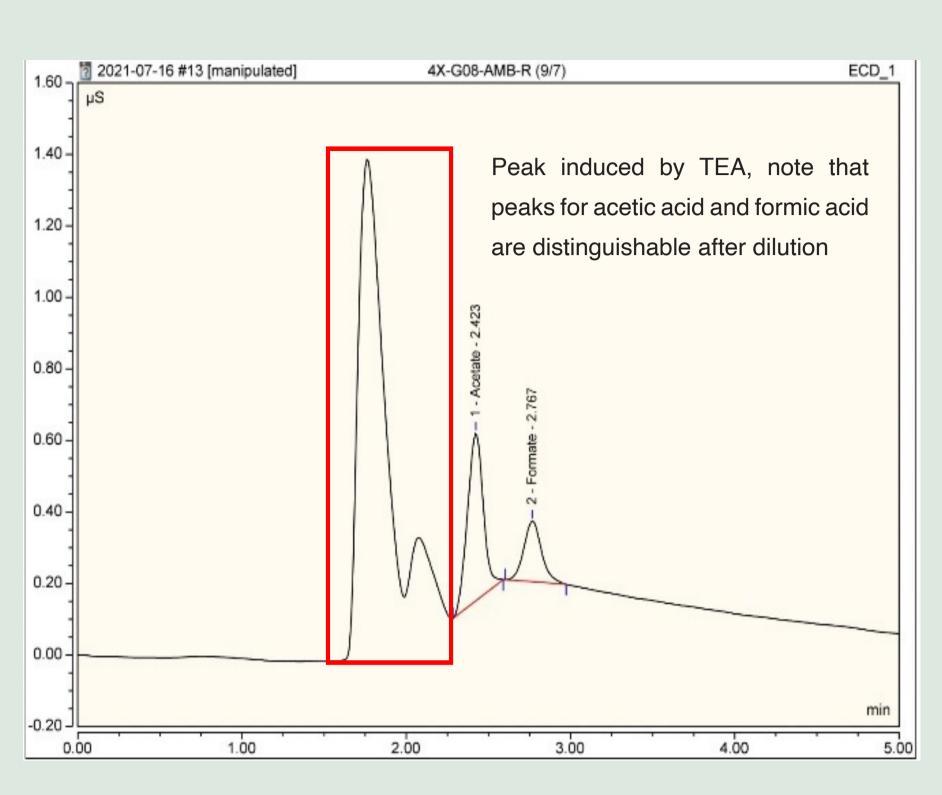
NaOH (AS11-HC) vs. NaHCO3/N						
Parameter	AS11-HC					
Matrix Interference	Yes (TEA)					
Internal Pressure (psi) (at flow-rate 1mL/min)	Lower (1360 – 140 psi)					
Ease of Operation	Easier					
Risk for Column Cloggage	Lower					
Robustness	Better					
Matrix Interferenc	e bv Triethvl					

Case Study: Museum Cabinets

	Summary of Result				
Description	Mean Acetic Acid (ppb)	Mean Form Acid (ppb			
Ambient	5.35	< 5			
Metal Cabinet	6.61	< 5			
Wooden Cabinet 1	23.64	10.11			
Wooden Cabinet 2	33.71	13.23			

Possible Way Forward

Quantification of Damage Induced by Organic Acids


- To quantify and estimate how such high amount of gaseous organic acids can induce damage on artefacts
- To provide objective comparison and gain cooperation
 To verify and quantify the effectiveness and resonance with collection and venue management staff

Selected References

- [1] Grzywacz CM. Monitoring for gaseous pollutants in museum environments. Tools for conservation. USA: Getty Conservation Institute; 2006.
- [2] Stranger M, Potgieter-Vermaak S, Sacco P, Quaglio F, Pagani D, Cocheo C, et al. Analysis of indoor gaseous formic and acetic acid, using radial diffusive samplers. Environ Monit Assess. 2009;149(1):411-7. • [3] Elyse C, Sara N. Strategies for Pollutant Monitoring in Museum Environments. Swedish National Heritage Board. 2019.
- [4] 2015 ASHRAE Handbook. American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2015: Chapter 23.

Acknowledgement

<u>Real Sample Analysis: Museum Wooden Showcase</u>

Result Table for the Wooden Showcase Sample										
Wooden Showcase Sample	Acetic Acid (ppb)		pb)	Formic Acid (ppb)			Mean (ppb)		RSD(%)	
Trial	Right	Middle	Left	Right	Middle	Left	Acetic Acid	Formic Acid	Acetic Acid	Formic Acid
1st	1003.07	1009.04	1030.54	277.14	258.01	255.95	1014.22	263.70	1.42	4.43
2nd	1084.05	1073.88	1143.13	280.69	262.48	254.89	1100.36	266.02	3.40	4.99
3rd	1004.65	1055.43	1079.56	256.09	247.72	239.21	1046.55	238.74	3.65	4.99
Mean	1030.59	1046.12	1084.41	269.91	252.02	246.53	1014.22	263.70		
RSD (%)	4.49	3.19	5.21	5.82	5.72	6.25	4.44	6.59		

• Due to the protonation of TEA by NaOH

• Solved by matrix dilution (DI Water) and long exposure of sampler (1 week)

ts for Metal Store

- acids
- therefore justified

Establishment of Mitigation Plans and Verification

- To explore and establish ways to mitigate the emission of gaseous organic acids

Used for more than 20-year-old wooden showcase in museum was selected for analysis with the newly-developed method.

Result Discussion

• Metal artefacts are known to be extremely vulnerable to attack by organic

• More gaseous organic acids were detected in wooden cabinets than metal cabinet and ambient environment, wide usage of metal cabinets

• Acidic acid detected in ambient environment was probably due to contamination by exterior surfaces of the wooden cabinets

Promotion to Other Museums in Hong Kong

• To promote the importance of organic acids analysis

 To enlarge the project scale to exhibition galleries and other museums/archives

